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Measurements have been made in the flow over an axisymmetric cylinder-flare body, 
in which the boundary layer developed in axial flow over a circular cylinder before 
diverging over a conical flare. The lateral divergence, and the concave curvature in 
the transition section between the cylinder and the flare, both tend to destabilize the 
turbulence. Well downstream of the transition section, the changes in turbulence 
structure are still significant and can be attributed to lateral divergence alone. The 
results confirm that lateral divergence alters the structural parameters in much the 
same way as longitudinal curvature, and can be allowed for by similar empirical 
formulae. The interaction between curvature and divergence effects in the transition 
section leads to qualitative differences between the behaviour of the present flow, in 
which the turbulence intensity is increased everywhere, and the results of Smits, 
Young & Bradshaw (1979) for a two-dimensional flow with the same curvature but 
no divergence, in which an unexpected collapse of the turbulence occurred down- 
stream of the curved region. 

1. Introduction 
This paper is one of a series on ‘complex’ turbulent flows (defined as shear layers 

with complicating influences like distortion by extra rates of strain or interaction with 
another turbulence field). For an introduction to the subject see the companion paper 
by Smits et al. (1979), hereafter referred to as I. The present experiment was intended 
to investigate the effect of lateral divergence, leading to an extra component of mean 
strain rate equal to a Wlaz in x, y, z axes on a boundary layer whose basic strain rate 
is the simple shear aU/ay. As pointed out in I, the main question to be answered is 
how the extra rate of strain affects the dimensionless parameters of the turbulence 
structure, and also their computational counterparts, the empirical constants or 
functions appearing in calculation methods. The effects on the turbulence structure 
parameters are likely to be more important than the explicit extra terms in the 
exact - Reynolds-stress transport equations (for example the extra production term 
- w2aW/az in the turbulent energy equation for a diverging flow). Furthermore, the 
structural effects may oppose the effects of the explicit extra terms: lateral divergence 
(aW/az > 0) is known to increase turbulent energy but makes the above-mentioned 
production term negative. In  what follows we will refer to divergence or convergence 
effects as ‘divergence effects’ for brevity, making the sign clear when necessary. 
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A positive value of B W1a.z must be balanced, in incompressible flow, by negative 
values of BU/ax or aV/By or both, and without a long series of experiments it is not 
logically possible to attribute any observed effects of the extra strain rate to a W/az 
rather than aU/Bx or aV/By. In  most of the previous work on lateral divergence, and 
in the experiment described below, streamwise accelerations have been fairly small 
and awlax has been balanced mainly by i.3Vlay.t Now Townsend (1956, p. 188) 
attributed the reduction of large-eddy strength in a two-dimensional jet, compared 
to that in a wake, to the effect of negative aV/ay in the jet (where it is balanced by 
aU/ax):  if this attribution is correct and generally valid, it  implies that in a typical 
diverging flow the effects of positive a W/az in augmenting turbulent activity out- 
weigh the contrary effects of the negative aV/ay. As suggested by J. E. Green (private 
communication) there is probably a close analogy between the effect of positive 
a W/az in decreasing the cross-sectional area of a fluid element in the x, y plane and 
thus increasing its z-component vorticity, and the effect of bulk compression, extra 
strain rate - (aU/ax + a V p y ) ,  in two-dimensional compressible flow. Intensification 
of turbulent activity by bulk compression explains some curious features of supersonic 
turbulent boundary layers, including the increase of skin-friction coefficient that 
results from application of a moderate adverse pressure gradient (Bradshaw 1974; but 
see also Rubesin et al. 1977). Here, aU/ax is much smaller than aV/ay at high Mach 
number so that again the vorticity-intensification effect outweighs any effect of 
aV/ay as such. 

Nearly all three-dimensional or axisymmetric shear layers are affected by lateral 
divergence of the mean streamlines, and several experiments (Reynolds 1963; Keffer 
1965, 1967; Winter, Rotta & Smith 1968; Crabbe 1971; Patel, Nakayama & Damian 
1974; Agrell & White 1974; Brederode & Bradshaw 1978) have shown explicitly or 
implicitly that the turbulence structure is affected. (There are many other experi- 
ments on converging or diverging flows in the literature, which for one reason or 
another do not yield currently useful information on structural effects.) Calculations 
by Green, Weeks & Brooman (1972) and others suggest that the effect of a given 
strain rate a W/az on the turbulence structure is of the same order as that of an equal 
value of a Vlax, the extra strain rate imposed by streamline curvature. However, there 
seems to be no experiment designed to investigate a laterally diverging boundary 
layer in the absence of other special effects like three-dimensionality or transverse 
curvature: Reynolds and Keffer studied wakes with nominally collinear divergence (or 
convergence); Winter et al. (1968) studied the boundary layer on a waisted body of 
revolution in the presence of significant transverse curvature and also - as shown by 
Green et al. (1972) - with significant effects of streamwise curvature, lateral divergence, 
convergence and bulk compression; Johnston (1960) and Crabbe (1971) studied 
three-dimensional diverging boundary layers similar to that at  the attachment line 
of a swept wing; Patel et al. (1974) and Agrell & White (1974) studied the flow over 
a streamline body of revolution, necessarily in the presence of strong transverse 
curvature and significant streamline curvature near the tail; Bansod & Bradshaw 
( 1  972) studied the generation of extremely strong streamwise vorticity in a laterally 
converging flow in an S-shaped duct; and Brederode & Bradshaw (1978) investigated 
the centre-plane boundary layer in a square duct, subject to lateral convergence due 
to growth of side-wall boundary layers. The only configuration that gives pure 

t So that the net production term (still negative) is (v2-w2) a V / a z .  
- -  
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FIUURE 1. Side view of cylinder-flare model in blower rig. 
Memurements all made on top centre-line. 

divergence and zero longitudinal vorticity is a circular cone, but if the origin of the 
boundary layer is at  the apex of the cone the rate-of-strain parameter (aW/ax)/(aU/ay)  
does not exceed about 0.03 in mid-layer whatever the cone angle. 

In order to  achieve a larger rate-of-strain ratio than is attainable on a cone, we 
have studied the boundary layer on an axisymmetric ‘cylinder-flare’ body (figure 1) 
in which the boundary layer initially grows on a cylinder in axial flow and then 
passes to a conically diverging flare with an included angle of 40’. Necessarily, stream- 
line curvature occurs in the transition section between cylinder and flare, but our 
hope was that the effects of streamline curvature would die out soon enough for 
divergence effects to be studied in near-isolation on the downstream part of the flare. 
In order to assess, and if possible subtract, the effects of streamline curvature alone, 
a comparison experiment (case CCZOC of I) was performed on the boundary layer in 
a two-dimensional 30 degree concave bend with the same side view, and roughly the 
same initial boundary-layer thickness, as the cylinder-flare body. Quantitative sub- 
traction of streamline curvature effects proved not to be possible, because of an 
apparent nonlinear interaction between curvature and divergence, but the qualitative 
picture is clear. 

In startling contrast to I, where concave streamline curvature in nominally two- 
dimensional flow led to development of strong spanwise variations, plausibly ascrib- 
able to longitudinal vortices, streamline curvature accompanied by lateral divergence 
seems if anything to reduce pre-existing circumferential variations. Explanations can 
be offered but not as yet proved; more information about vortex formation in 
nominally two-dimensional flow is needed, and further work is in progress. However 
the absence of longitudinal vortices on the cylinder-flare body simplifies the inter- 
pretation of results. The continuing divergence prevents the collapse of turbulent 
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activity found downstream of the concave bends in I, and it can be claimed with 
reasonable confidence that the differences between the boundary layer on the down- 
stream part of the flare and a self- preserving constant-pressure boundary layer are 
due to divergence effects, rather than to memories of the curvature further upstream. 
This claim applies also to the effects of transverse curvature; S/r at the start of the 
transition section was 0-25, which itself appeared to be too small to affect the boundary 
layer significantly, while at  the last measurement station S/r was barely 0.1. The 
rate-of-strain ratio (aw/az)/(au/ay) is equal to ( U / r )  dr/dx/(aU/ay)  and since dr ldx  
is constant the ratio varies roughly as 1/r. At the last measurement station the ratio 
is about 0.1 in mid-layer while, as a simple example of the strength of divergence 
effects, the apparent mixing length in the outer layer a t  this station is about twice as 
large as in a two-dimensional boundary layer of the same thickness. 

Section 2 describes the apparatus and techniques, and $ 3  presents the results, which 
include sufficiently detailed turbulence measurements to permit the evaluation of 
turbulent energy and shear-stress balances. Section 4 is a discussion of the results, 
concentrating mainly on the dimensionless structure parameters and the transport- 
equation balances. The implications of the results for turbulence modelling are not 
discussed in detail; this will be done in a later paper. 

2. Apparatus and techniques 
The cylinder-flare body (figure 1) has a cylindrical section 152.4mm in diameter 

and 1460mm long, preceded by a streamlined nose 160mm long and followed by a 
flare of 20" half-angle. The radius of curvature of the transition section between the 
cylinder and the flare is 254mm and it follows that the imaginary apex of the flare 
lies on the axis 164 mm upstream of the start of the transition section. Measurement 
stations (figure 2a) are defined at  intervals of 25.4mm measured along the surface, 
the first being 146mm upstream of the start of the transition section, which has an 
arc length of 89mm. For ease of comparison with I, the origin of the distance s, 
measured along the surface, is taken at the end of the transition section, 267 mm from 
the imaginary apex of the conical flare. Thus (l/r)dr/ds = l/(s+ 267) for s > 0. 

The body is mounted in the 355.6mm diameter working section of a blower wind 
tunnel, identical with that used in I except for the contraction and working section: 
the body is supported by sets of four 1.4 mm wires, one set at  each end (figure 1) .  The 
working section terminates in a short bell surrounding the transition section of the 
centre-body, designed by eye to minimize the pressure peak on the transition section 
of the centre-body. The annular mixing layer that forms downstream of the exit bell 
(figure 2a) intersects the boundary layer on the centre-body flare at about s = 450 mm; 
no serious measurements were made downstream of s = 375 mm but the skin friction 
coefficient is little affected up to s = 600 mm at least. 

The tunnel reference velocity U,.,, was taken as the free-stream speed a short distance 
downstream of the nose, at  s = - 1650 mm, and was set at 38 m s-l (U,,,/Y 2: 2.57 x 
lo6 m-l). The free-stream speed increased down the working section to about 1.07U1,, 
near the start of the transition section, because of boundary-layer growth; the 
pressure-gradient parameter (S*/T,) dpldx is only about - 0.02 at this point, and 
the skin-friction coefficient is negligibly different from the value in a constant-pressure 
boundary layer at the same Reynolds number, while the Coles wake parameter II is 
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177.'8 mm radius 

also very close to the constant-pressure value of 0.58. The boundary-layer thickness 
is not exactly the same as at the entry to the 20" bend in I; but recall from I that the 
state of the turbulence at exit from a sharp bend depends mainly on the turning angle 
and less on the ratio of the boundary-layer thickness to the radius of longitudinal 
curvature R. 

Measurement techniques and procedures were generally as in I; the only major 
difference is that all three fluctuating velocity components were measured, in the 
upper half of a diametral vertical plane, in the present work. 

Figure 2 (b )  shows the extra strain rates, calculated from the body geometry. The 
values for curvature are based on the surface curvature rather than that of the 
streamlines, and except very close to the surface the plot of the true curvature 
contribution to e l U  will be a bell-shaped curve of area equal to the rectangle marked 
'curvature' in figure 2 ( b )  but extending over a somewhat larger range of s. Except in 
the immediate neighbourhood of the curved transition region the response of the flow 
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FIGURE 2. Geometry and extra strain rates. (a) Details of measurement region; see table 1 for 
symbol key. (b )  Extra strain rate e :  for curvature, e = U / R  = aV/az ;  for divergence, e = 
(u/r) dr lds  = a Wlaz. The superposition of the two is for illustration only. ---, actual strain 
rates; - - - - -, effective (total) strain rate (108Iag);---.-, curvature contribution to effective strain 
rate. (c) (aW/az)/aU/ay at  y = 0.58. 

depends mainly on the total turning angle rather than the distribution of curvature, so 
that the discrepancy is not important for present purposes. The curvature and diverg- 
ence contributions have been superimposed for illustration; this would be exactly valid 
only if the response of the flow was linearly proportional to the extra strain rate with 
the same constant of proportionality for curvature and for divergence, but this is a 
good first approximation. To demonstrate that the memory of curvature effects is 
small a t  large s, we have plotted in figure 2 ( b )  the ‘effective’ strain rate eerf, defined by 
the lag equation 

(1) 
deeii e-eefr 
dx  10s ’ 

which is a simplified version of equation (2) of I. Use of (1) in calculation methods 
produces a significant improvement in prediction of effects of short regions of extra 
strain rate so that it is at least qualitatively useful. The curvature contribution to the 
effective strain rate, the chain-dotted line in figure 2 ( b ) ,  is a fairly small fraction of the 
total effective strain rate (dotted line) for s > 200mm say, so that (accepting the 
above-mentioned conclusion that a given a W/az produces the same order of effect as 
the same value of a ?‘/ax) the structural changes observed in this region are attributable 
primarily to divergence, with comparatively small effects of curvature. 

Figure 2 ( c )  shows the (unlagged) extra-strain-rate parameter (aW/az)/(a U p y )  
evaluated at  y/6 = 0.5 using the profile data presented below. 

-=- 

3. Results 
The pressure distribution is shown in figure 3. The alternating pressure gradients 

in the region of the bend result from the failure of the bell (figure 1) to cancel the 
curvature-induced pressure entirely. The maximum value of the pressure-gradient 
parameter (6*/7,) d p l d x ,  just downstream of the curved region, is about 2-4; although 
the pressure gradients cause quite large excursions in skin-friction coefficient (figure 4) 



Turbulent boundary layer and lateral divergence 

I I 1 I 1 1 

249 

I CP 
-0.05 

-0.10 

-0.15 

1 0 0 1  I 200 

FIGURE 3. Surface pressure distribution: cg = (p-p,,,)/&pU& 
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FIGURE 4. Skin-friction coefficient, c, E 7,/(0.5pU,2). 0, logarithmic law; a, Preston-tube 
measurement; ---, calculation without allowance for extra strain rates in turbulence model; 
-.-.-, constant-pressure c, for same R,. 

their effects on the turbulence will be confined to the inner layer while the net decrease 
in free stream velocity through the bend is only about 10 per cent. As in I, we take the 
position that the effect of moderate pressure gradients on the dimensionless structural 
parameters of the turbulence is small, in the sense that boundary layers in moderate, 
arbitrary pressure gradients can be predicted satisfactorily by calculation methods 
assuming constant values for structural parameters. Passing support for this statement 
is provided by the calculation for the present flow shown in figure 4: the calculation 
was made by the method of Bradshaw and co-workers (Bradshaw & Unsworth 1974) 
without allowance for effects of curvature or divergence on the turbulence structure, 
and it can be seen that the discrepancy between calculation and experiment increases 
smoothly through the bend, as expected if the discrepancy is due mainly to cumulative 
extra-strain effects rather than the alternating effects of pressure gradient. The skin- 
friction coefficient starts to increase at  s N 150 mm, somewhat before the end of the 
region of adverse pressure gradient. It rises slightly but significantly above the 
constant-pressure value for the local value of V,O/v,  also plotted in figure 4, but a 
more useful comparison for the assessment of extra-strain effects is with the calculation. 
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FIGURE 5. Integral properties: (a) total thickness S,,,; (b)  momentum thickness 8; (c) shape 

parameter H ,  S*/8; (d) momentum-thickness Reynolds number U,8/V. 

The accuracy of the skin-friction measurements is indicated by general agreement to 
within about 2 per cent between values obtained from Preston tube readings and those 
deduced from logarithmic velocity profiles, except for the profiles at  s = 4.6 and 
s = I9 where the logarithmic region is not well enough defined for the curve-fitting 
procedure used in the data analysis. 

Integral parameters obtained from the mean velocity profiles are shown in figure 5. 
The main effect of lateral divergence on the flow is a tendency for the boundary-layer 
thickness to decrease: in fact the momentum thickness happens to remain nearly 
constant for some distance downstream of the bend. The momentum-thickness 
Reynolds number at the last measurement station is still slightly over 4000 and low- 
Reynolds-number effects are therefore ignored in the data analysis. Values of the 
shape parameter are much lower, and the skin friction coefficient is somewhat higher, 
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Station 
6 

11 
14 
16 
18 
20 
22 
24 

Symbol 
0 
0 

0" 
0 
w 
A + 

8 (-) - 159 
- 32 

19 
70 

121 
171 
222 
273 

4l9, (mm) 
18.53 
21.20 
17.58 
16.35 
16.57 
17.33 
17-57 
18.25 

1.003 
1.024 
1.077 
1.039 
1.010 
1.01 1 
1.011 

TABLE 1. Free stream velocity, boundary-layer thickness 89g5, and symbol key for turbulence 
measurements. S,,, values were measured during same series of runs as turbulence quantities. 
Figure 5 shows an earlier, more complete set. 

than in constant-pressure two-dimensional flow at the same Reynolds number. The 
boundary-layer thickness 6 = Sgg6, defined as the distance from the surface at which 
U / V ,  = 0.995, is given in table 1; it is used to scale most of the profiles presented 
below. 

Figure 6 (a)  shows the circumferential variation of Preston tube readings, which 
can be taken as roughly proportional to skin-friction coefficient. Large excursions 
occur in the wakes of the four wires which hold the centre-body in place, as might be 
expected. The regions of high skin friction either side of the wire wake result from the 
horseshoe vortex wrapped round each support wire; although the increase in height 
of these peaks as the flow passes through the curved transition section is probably 
attributable to the effects of streamline curvature on longitudinal vortices, the peaks 
would appear even on a flat surface, The excursions elsewhere on the circumference 
do not seem to be significantly increased by the bend (compare s = - 108mm and 
s = 44 mm) and nowhere exceed about ~f: 4 per cent whereas in I the excursions down- 
stream of two-dimensional bends exceeded -t. 10 per cent. Some separate and more 
detailed measurements, including local static pressure so that accurate values of cf 
could be deduced, were made over a circumferential distance of about 25" near the 
top generator. The results are shown in figure 6 ( b ) ;  circumferential variations decrease 
significantly with increasing distance downstream (results at  the last station may have 
been affected by the merging mixing layer). The bars on the figure show the boundary- 
layer thickness at  each station, on the angle scale; if longitudinal vortices occurred 
the period of the resulting circumferential variation would be about 26. It appears 
from this that steady longitudinal vortices are not formed in the present case?: it is 
possible that unsteady vortices form, and this question will be discussed below. In  
view of the absence of any tendency for cr to amplify, no further circumferential 
traverses have been made: indeed, the results presented in figure 6 were taken only 
as a preliminary check on circumferential variations and may be somewhat scattered, 
thus exaggerating the excursions of c f .  The present results do not include any two- 
point correlations and it has therefore not been possible to see whether the large 
eddies have an unusually high level of (fluctuating) circumferential vorticity, the likely 
effect of divergence. 

t Most observations of curvature-induced vortices have been made on tunnel walls, but the 
pioneering measurements of Tani (1962) were made on a body mounted in mid-tunnel. Hypo- 
thetical peculiarities in tunnel screens, conked to the region near the tunnel walls, are therefore 
not a sufficient cause of vortices. 
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FIGURE 6. Circumferential variations of c,; large excursions near f 45" and k 135' are wakes of 
support wires. (a) Preston-tube pressure coefficients around full circumference. (b )  Skin-friction 
coefficients near top generator, 0 , 5  = 95mm; A ,  146; a, 222; V ,  375; 0 , 6 7 9 .  

Mean 'velocity' profiles are shown in figure 7. The quantity labelled U is actually 
(2(P -pw) /p} i ;  that is, U is deduced from the local total pressure and the wallstatic 
pressure. Static-pressure measurements were not made within the stream. Differences 
between U and the true velocity are negligible except for the profiles in the curved 
transition section (s = - 82.6, - 32-0 and - 4.6 mm) where the static-pressure dif- 
ference across the boundary layer will be somewhat less than the value pUES/R 
deduced from the assumption that the velocity is U, and the streamline curvature 
1/R everywhere. The largest value of S f S,,, is 21.4mm at s = - 32 mm: pU:8/R is 
then 0.17 x +pU: and the actual value of pw - p 8  is likely to be about half this, judging 
by the calculations of Mahgoub & Bradshaw (1977) for the two-dimensional bends of 
I. Thus the difference between U and the actual velocity at  y = S is likely to be no 
more than 4 per cent at  the most critical station while the difference in the inner layer, 
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FIUURE 7. U-component mean velocity profiles (logarithmic plot). (a )  s = - 235 to - 82.6 mm 
(curved transition section starts at s = - 88.6): scale of U / u ,  is for s = - 235; other profiles 
shifted upwards successively by 1.25 units. ( b )  s = - 32 to 95 mm, showing appearance of dip in 
logarithmic law: scale of U / u ,  is for s = - 32; other profiles shifted upwards successively by 
2.5 units. (c) s = 121 to  375mm, showing persistence of small‘wake’ component: scale of U / u ,  
is for 8 = 121; other profiles shifted upwards successively by 1.25 units. 
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FIGURE 8. Mean-square u-component intensity profiles. 

For key to symbols see table 1. 

y/8 c 0.2 say, is negligible. The length of the bend is 89mm or about 58; over this 
short region the total pressure on a given streamline is almost conserved (whatever 
the pressure gradient) and therefore U(y) as defined above, or strictly U($) ,  where q? 
is the stream function, is a more relevant quantity than the true velocity, which just 
reflects quasi-inviscid distortion by the pressure gradients. This view is supported by 
the U profiles, which show a steady trend in and downstream of the bend. The Coles 
wake parameter n, proportional to  the maximum deviation of the velocity profile 
above the logarithmic law, increases to a maximum at z = - 82.6, where the adverse 
pressure gradient is a maximum, and then decreases smoothly. The wake parameter 
is SO strongly dependent on u, that it is not an unambiguous indicator of the state of 
the outer layer, but for present purposes it is an adequate global parameter to demon- 
strate the smooth variation of the pseudo-velocity U. 

The dip below the logarithmic law, shown in I to be the result of an increase in eddy 
length scale due to the destabilizing effects of concave curvature (presumably assisted 
in the present case by the destabilizing effects of lateral divergence) persists until 
after station 17,  some 6S, downstream of the end of the bend, but thereafter the profile 
shape is near-normal, with a rather small wake component. In  all profiles the log- 
arithmic region near the wall is extensive enough for adequately reliable values of 
c, to be deduced. 

Figures 8-1 1 show the Reynolds normal and shear stresses, normalized by U:ef and 
plotted against y/S for easy identification of trends. The sudden collapse found down- 
stream of the two-dimensional concave bends in I is absent: turbulence levels decay 
very slowly downstream of the bend and are still well above the initial values even 
at the last station; far enough downstream, the profiles will return to approximately 
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FIGURE 9. Mean-square v-component intensity profiles. 
For key to symbols see table 1. 

Y f 6  

FIGURE 10. Mean square w-component intensity profiles. 
For key to symbols see table 1. 

their initial shapes, albeit scaling on u: rather than Utef. The most notable feature of 
the profiles is the outward progression of the decaying peak. Values of and v7 at 
8 = 171 mm (filled squares) are obviously too low but the general trend is clear. 

The same feature of an outward-progressing peak is found in the triple products, 
figures 12-14: qualitatively it results from the development of large-eddy eruptions. 

Further derived results and calculations are presented below. 

4. Discussion 
As mentioned above, the effects of longitudinal curvature and lateral divergence 

(hereafter referred to simply as ‘curvature’ and ‘divergence’) proved to be too large 
for the effect of divergence to be taken simply as the difference between the present 
results and the results for the 20” two-dimensional concave bend in I. However a 
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FIGURE 11. Shear-stress profiles. For key to symbols see table 1. 

qualitative comparison between the two experiments is the best way of introducing 
the present results. 

The most obvious difference between the present results and the two-dimensional 
bend results is that the strong spanwise variations due to quasi-steady longitudinal 
vortices are absent here. Indeed the pre-existing spanwise variations, resulting from 
non-uniformity in the tunnel stream, actually seem to decrease in the region of 
divergence. It cannot be proved that this difference between the two-dimensional and 
axisymmetric results is real, rather than a consequence of the difference in the initial 
spanwise variations, but all the evidence suggests that quasi-steady longitudinal 
vortices are absent from the cylinder-flare diverging flow. If this is so the remaining 
possibilities are that longitudinal vortices, presumably formed in the curved region, 
are still present in the conically diverging region but have no preferred circumferential 
positiont and therefore produce no circumferential variation of mean values; or that 
no longitudinal vortices worthy of the name are present. Of course the ensemble- 
average large eddy in a plane boundary layer still contains longitudinal vorticity but 
the streamwise coherence length of the latter is of the order of the boundary-layer 
thickness instead of many times this as in the case of a longitudinal vortex proper. 

The second main difference between the diverging flow and the flow in the two- 
dimensional concave bend is that the high turbulence levels generated in the curved 
region persist in the conically diverging region, decaying only slowly as the divergence 
parameter (a W/az)/(  a U / a y )  decreases. This behaviour was expected; the unexpected 
behaviour was the rapid decrease of turbulent activity below the initial level in the 
case of the two-dimensional bend, rather than a monotonic return to the constant- 
pressure self-preserving state. If one ignored the strong hints of interaction between 

t The narrowness of the support-wire wakes implies that circumferential wandering is small, 
but successive vortices might originate a t  different circumferential positions. 
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FIGURE 12. Profiles of triple product ZLT. For key to symbols see table 1. 
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FIGURE 13. Profiles of triple product 2. For key to symbols see table 1. 

the effects of curvature and the effects of divergence given by the above-mentioned 
absence of longitudinal vortices, one would attribute the whole differences between 
the two flows to the effects of divergence acting alone, and deduce that those effects 
are very large. Even a more reasonable estimate making a generous allowance for the 
interaction - say, an assumption that, far downstream of the curved region, the effect 
of divergence alone is equal to the difference between the observed flow and the 
constant-pressure self-preserving state - leads to the conclusion that divergence effects 
are highly significant. 

One must distinguish between changes in dimensional properties, such as intensity 
and shear stress, and changes in dimensionless properties such as the ratio of shear 
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FIGURE 14. Profiles of triple product ?. For key t o  symbols see table 1. 

stress to turbulent kinetic energy. Changes of the latter sort imply changes in 
the empirical input to calculation methods, and obviously some structural changes 
must occur if the effect of an extra strain rate is larger than the effect of the 
explicit extra terms it introduces into the Reynolds-stress transport equations. The 
main part of the discussion is concerned with structural parameters, but is preceded 
by comments on dimensional quantities such as the mean velocity and Reynolds 
stresses. 

The mean velocity profiles (figures 7 a-c) show the same dip below the logarithmic 
law as the two-dimensional bend results, but it vanishes much more quickly, about 
six initial boundary-layer thicknesses downstream of the end of the curved region, 
i.e. at s 21 66. The wake component of the velocity profile increases to a maximum at 
s _N 7-86, and thereafter decreases. The momentum-thickness Reynolds number 
decreases slowly over most of the conically diverging region but is still slightly over 
4000 a t  the last measurement station (s - 156) so that the decrease in wake component 
cannot be attributed to the low-Reynolds-number effects documented by Coles (1962), 
which would predict a decrease in Aulu, of only about 0.14 a t  V,  8/v = 4000. Crudely, 
we expect small values of wake component (low W )  to result from larger-than-usual 
negative values of ar/;ly in the outer layer, and this expectation is confirmed below. 
Strictly, the mean velocity profile is the result of the entire history of the shear-stress 
profile, and it is more informative to examine the latter. It does not seem profitable to 
use the present results to develop sophisticated velocity-profile families with a view 
to use in ‘integral’ calculation methods; it is unlikely that a turbulence model based 
directly on integral parameters would reproduce the effects described below and the 
use of the Galerkin technique to reduce a ‘field’ method (partial differential equations) 
to an ‘integral ’ method (ordinary differential equations) relies €or its greater economy 
on the velocity and shear stress profiles having simple shapes, which in the present 
case they do not. 

The shear-stress profiles (figure 11)  show a rapid rise in general level through the 
curved region. The excursions of shear stress near and at the surface are mainly the 
response to the pressure gradient in the curved region, which necessarily leads to 
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changes in total pressure at and near the surface: the region in which the flow is in 
local equilibrium is quite thin, and for y/6 > 0.1, say, the shear stress and intensity 
on a given streamline would remain almost constant through the curved transition 
region if it  were not for the direct effects of curvature and divergence. As it is, the 
shear stress on the line y /S  = 0.4 - roughly a streamline - increases by a factor of 
nearly 3 through the curved region (i.e. between s = - 159 and s = 19mm). This be- 
haviour is qualitatively in agreement with that found in I ;  because the concave-surface 
flows in I rapidly develop large spanwise inhomogeneities, a quantitative comparison 
is not possible. Just before the end of the curved transition region, the nominal extra 
strain rate due to streamline curvature, - U/R where R is the surface radius of 
curvature, is very nearly equal to the extra strain rate due to lateral divergence, which 
rises nearly linearly through the bend (figure 2 b ) .  At the end of the transition section, 
therefore, the aggregate extra strain rate nominally halves, and thereafter a W/az 
decreases slowly. The curvature of the streamlines is not generally the same as that 
of the surface and the addition of two components of extra strain rate carries the 
unjustified implication that their effects are additive, but the plot in figure 2 ( b )  is 
qualitatively helpful. The shear stress also starts to  decrease at  the end of the trans- 
ition section but even at the last measurement station, s = 273mm, it is much 
higher in the outer layer than in a two-dimensional plane flow: it is also much higher 
than at x = 310 in CCBOC, the nearest corresponding station in I. Furthermore, while 
the shear stress in CC2OC falls rapidly and monotonically with x after the end of the 
curved region, the shear stress profile in the present case maintains an almost constant 
shape between s = 171 and s = 273, decaying at roughly the rate expected from the 
slow decrease in a W p z .  Because a W/az is decreasing, the shear-stress level at  a given 
station will be slightly higher than if the local value of aW/& obtained for all s (the 
'time constant' for response of a turbulent boundary layer to perturbation being of 
order 106) but one can be fairly sure that the shape of the shear stress profile at, say, 
station 24 is principally the result of prolonged divergence, with little memory of the 
short region of curvature which finished a distance of 156 upstream. 

The collapse of the shear-stress profiles in I was attributed mainly to the large 
decrease in aU/ay through the bend, which resulted from the large increase in 7 (and 
h / a y )  through the bend. The increase in 7 in the transition region of the cylinder-flare 
model is less pronounced than in CCBOC (the shear stress at  y/6 = 0-35 increases by a 
factor of 2.5 between 5 = - 159 and s = 19, while in CCSOC the factor of increase 
through the bend is 3.7). An equally significant feature is that the shear-stress peak 
in the diverging flow moves steadily outwards, while in the two-dimensional concave- 
surface flow the shear-stress peak, as measured downstream of the bend, remains a t  
about y /S  = 0-35 as it decays. In the two-dimensional flow, therefore, the total pressure 
P increases for y/S < 0.35 and decreases for y/S > 0.35, leading to a large decrease in 
aUlay; in the diverging flow iiP/ax at y/A = 0.35 is negative at  s = - 32 and positive 
for s = 19 onwards, and more generally the effects of shear-stress gradients on the U 
or P profile are smeared out over a larger range of y than in the two-dimensional 
flow, leading to smaller decreases in aU/ay and in the shear-stress generation term 
v2aU/ay. In fact 7?aU/ay  decreases very slowly after the end of the bend, in sharp 
contrast to the precipitous fall found in the case of the 30" concave bend. The direct 
effect of lateral divergence on a u l a y  is of course significant: first principles, or use of 
the last term in the transport equation for aU/ay obtained by differentiating the 

- 
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x-component momentum equation with respect to y J  namely 
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(2) 
i a Z P  i a Z 7  awau awau 

a a ) a u  
a u-+ v-+ Jy- - = ---+ +-- ( ax ay  a Z  ay paxay  pay2 ay a Z  az ay 

and substituting a W/az  = ( U / r )  drldx,  show that the response to a change of cross- 
sectional radius r is 

AaUlay Ar 

so that the increase in cross-sectional radius r between the cylindrical body and the 
flare a t  s = 19 would alone produce an increase in aU/ay by a factor of about 1.3, 
depending slightly on the value of y chosen. 

The reason for the steady outward progression of the shear-stress peak is, presum- 
ably, the continued influence of a destabilizing extra strain rate (i.e. divergence) after 
the end of the curved t’ransition region; in the two-dimensional flow the extra strain 
rate falls to zero at the end of the bend. Qualitatively a t  least, the present flow behaves 
like the flow in a sharp two-dimensional bend followed by gentler curvature. Whether 
it is fair to regard this as a nonlinear interaction between curvature and divergence 
effects is not clear: certainly the effect could be qualitatively reproduced by calcula- 
tions using linearly additive allowances for the effects of curvature and divergence on 
turbulence structure, but equally certainly the coupling between the mean flow 
and the turbulent field via the nonlinear (quasi-linear) shear-stress generation term 
v2iiU/ay supplies the basic mechanism. Notice that, just as the collapse of shear 
stress in the concave-surface flows of I was explained without invoking the presence 
of longitudinal vortices, the absence of the collapse in the present flow need not be 
attributed to the absence of the vortices. (Certainly one would expect longitudinal 
vortices to occur in the hypothetical variable-curvature flow mentioned above.) 

I n  the rest of the discussion, i t  will be taken that the flow a t  the later stations is 
dominated by divergence effects, but that the flow in and just downstream of the 
curved transition region is interesting in itself. 

As in I ,  the intensity profiles (figures 8-10) are best discussed in terms of anisotropy 
parameters, notably the stress-energy ratio a, = -uv/q2 and the ratios vz/u2 and 
uv/vz  (figures 15-17: symbols are omitted from these derived figures since the scatter 
in the data is fairly small as the earlier figures witness). At the first station, s = - 159, 
a, is close to 0.15 except in the outermost part of the boundary layer. I n  the bend, it 
increases uniformly over the outer layer, but as in I the value near the wall is almost 
unchanged because the ratio of the extra strain rate to aU/ay is small there (the argu- 
ments of 6 4.1 of I apply unchanged). Downstream of the bend, values in the inner half 
of the boundary layer fall rather rapidly with x, to lower values than in the initial 
profile, and values in the outer layer fall more slowly; a,, like T ,  almost reaches a 
plateau value in the outer layer. The low values in the inner half of the layer are simply 
explained as the consequences of ‘inactive ’ motion (Townsend 1961; Bradshaw 1967, 
1978); the unusually high turbulent activity in the outer part of the flow, where the 
eddies are large, leads to irrotationally induced motion in the x, z plane near the wall, 
contributing to 2 and 2 but not to 3 or G. A very similar a, profile was measured 
in a strongly retarded boundary layer by Bradshaw (1967): again, the explanation is 
the high level of turbulence in the outer layer. The value of w / v 2  (figure 17) is almost 

(3) -- _ -  
a u l a y  r 

- 

- -  _ -  
- -  

- -  
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FIGURE 15. Ratio of shear stress to (twice) turbulent 
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FIGURE 16. Ratio of vertical to longitudinal mean-square 
intensity. The values of s are in mm. 

independent of x in the inner layer, which supports the explanation; in the outer layer 
uv/v2 increases, but not so markedly as a,. 

The mixing length and eddy-viscosity profiles (figures 18 and 19) provide rather 
spectacular demonstrations of the failure of simple turbulence models in complex 
flows. It is accepted that, being based on local-equilibrium concepts, they fail in 
rapidly-changing flows, but a t  the later stations in the present flow the streamwise 
rates of change are very small: much the same applies to  the concave case of I, where 
streamwise rates of change are even smaller. At s = 273, y/6 = 0.5, say, the mixing 
length is about 0.168 or twice the value in a two-dimensional constant-pressure 

- -  
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boundary layer. At this point, ( a  W/dz)/(aU/ay) is about 0.10, which suggests that the 
empirical constant a, in the amplification factor 

defined in $4.1 of I is nearly 10; other checks at the later stations (figure 18 b) ,  where the 
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lag effect mentioned in I is fairly small, also suggest an asymptotic value of about 
10 as deduced by Bradshaw (1971) from less detailed data. Near the wall, where 
extra-strain effects are small, I N 0 . 4 1 ~  as usual. Note that lag effects have not been 
taken into account in figure 18 ( b ) ;  the lag formula should be applied to a true turbu- 
lence length scale rather than the mixing length, and analysis of the present results 
in the context of turbulence modelling will be reported separately. As usual, the 
variation of eddy viscosity v, is larger than that of mixing length (7cc v, but 7cc 12). 

The triple products (figures 12-14) show an exaggerated version of the rise exhibited 
by the shear-stress and intensity profiles. Again, a peak forms at  y/S N 0.3 and 
progresses outwards; at  the last measurement station the peak in each triple product 
has reached y /6  N_ 0.8 and the peak value is five or more times the value at  the same 
y/S in the undisturbed boundary layer. In general the triple-product profiles are much 
more closely related to the Reynolds-stress profiles than to the Reynolds-stress 
gradients. The extra strain rate evidently augments Reynolds stresses and triple 
products - and eddy activity in general - in much the same way: in physical terms it 
augments the outward-going 'bursts' at all positions across the shear layer. An 
interesting feature, particularly noticeable in&, is that a secondary peak forms near 
the wall, entering the measurement region y/S > 0.09 just after the end of the curved 
transition section and moving outwards until absorbed by the main rise in triple 
product. Probably the formation of this peak is associated with the relaxation of the 
large positive shear-stress gradient close to the wall but it could be quantitatively 
explained by simple gradient-diffusion arguments. As in I, the simplest quantities to 
discuss are the transport velocities V, and V ,  (figures 20 and 21). The two main features 
are the monotonic rise in transport velocity with x in the outer part of the flow, and 
the fact that, as in I, the transport velocities are positive everywhere, indicating 
counter-gradient transport in the inner layer. The large but slow increase in transport 
velocity in response to prolonged extra strain rate is a good demonstration of the 
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FIGURE 21. Transport velocity of shear stress, V, E uv2/uv. 

long response time of the large eddies in the outer part of a boundary layer, and of the 
sensitivity of large-eddy structure to extra strain rates. The smoothness of the response 
suggests that the transport velocities could in principle be correlated by a simple rate 
equation; the size of the response suggests that  such an equation is indeed a necessary 
part of a calculation method for complex flows like the present one. The simplest view 
of turbulent transport by the large eddies would suggest that V, and V ,  should be nearly 
equal. I n  fact, V,/V, is well correlated in the present -- Aow, outside the inner region 
where V,/V, N 0,  by V,/V, = 3.3a, (to be precise, uv2/q2v is close to 0.3, as shown in 
figure 22) and a,  (figure 15) varies between 0.15 and 0-2 over the main part of the flow, 
implying that V,/V, varies between about 0.5 and 0.7. Similar results have been found 
by Murlis (1975), Castro & Bradshaw (1976) and Andreopoulos (1978). 

The entrainment velocity, defined by 

l a  
Vg = ; {rU,(6 - a*)), 
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FIGURE 22. Ratio of triple products, - uvz/q2v. 

is plotted in figure 23. The results in the entry region are ill-defined, and the above 
relation is not accurate in the curved transition region where thin-shear-layer approxi- 
mations are not valid. However, the values for about s > 50 seem to be reliable and 
indicate a large increase in entrainment rate: the value for a constant pressure 
boundary layer at  the typical U, S / v  of 5000 is about 0.015, while the peak value in 
figure 23 is 0.046Ue. If the transport equations reduced to 'mean transport = turbulent 
transport ' near the outer edge of the boundary layer, then the entrainment velocity 
would equal the y-component turbulent transport velocity: V,, the transport velocity 
for turbulent energy, seems to asymptote to a value fairly close to the entrainment 
velocity, but V ,  (not shown in figure 23) is very much larger, indicating that the sink 
(pressure-strain ' redistribution ') term in the shear-stress transport equation is a large 
fraction of the turbulent transport term. The decrease in V, for s > 100 seems to be 
real, but the continued increase in V, (and V,)  for s > 100 is also well defined; the 
implication is that the simplifying assumption ' mean transport = turbulent transport' 
is not to be trusted to great accuracy, at  least in strongly perturbed flows like the 
present one. 

Energy balances a t  a number of stations are presented by Smits, Eaton & Bradshaw 
(1978). Transport by pressure fluctuations was neglected and dissipation was obtained 
as the difference of the other terms. Large values of advection occur within and 
downstream of the bend. The increase in intensity in the inner layer is short lived and 
stations 14 and 16 show quite large gains by advection (i.e. a decrease of in the x 
direction). Production in mid-layer increases greatly as the shear stress increases; 
near the wall, the production is nominally u : / ( K ~ ) ,  and u, does not change anything 
like as rapidly as the shear stress in mid-layer. As well as feeding the advection, the 
increased production leads to very large increases in diffusion. However the tendency 
for the triple products to behave like the Reynolds stresses rather than the 
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FIQURE 23. Entrainment velocity, VE ( l /r)  d{U,r(G-S*)}/ds.  

Reynolds-stress gradients (that is, the tendency for V, and V ,  to be better behaved 
than the turbulent diffusivities of 92 and &) results in quite large losses by diffusion 
from the inner part of the layer as well as from the regions of maximum production. 

The values of dissipation e, deduced by difference, have been used to calculate the 
dissipation length parameter, L 3 ( - G ) # / c ,  which is plotted in figure 24. Results in 
the outer layer are very much influenced by the accuracy of the advection, but the 
general trend of an outward-going peak is clear. If the flow were in local equilibrium, 
the mixing length 1 (figure 18) would be equal to L. Values a t  the last station, s = 273, 
have been omitted; evaluation of the advection at  the first or last station is always 
difficult and honest estimates are manifestly too small (the advection should be about 
the same as at  the previous station) leading to small values of dissipation by difference 
and hence to  excessively large values of L. 

Shear-stress balances are also shown by Smits et al. (1978). The transport terms are 
smaller, compared to the source terms, than in the energy balance. The reconciliation 
of this apparent difference between the energy and shear-stress balances (also found 
in equilibrium flows) with the relatively simple behaviour of the stresslenergy ratio 
a, is that the pressure-strain term consists of two parts. One part, depending on the 
mean rate of strain, can be thought of as directly opposing the generation term; 
the second part, independent of the mean velocity field, represents the tendency of 
the turbulence to return to isotropy. In  principle it would be better to group the first 
(mean-strain dependent) part of the pressure-strain term with the generation term, 
giving a relatively small net source term which would be roughly balanced by the 
return-to-isotropy term just as energy production is roughly balanced by dissipation. 
In  practice the mean-strain-dependent part of the pressure-strain term depends on a 
weighted integral of the mean strain rate over - nominally - the whole flow volume, 
rather than on local aUlay,  and the weighting function contains complicated 
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turbulence quantities which have not yet been measured in any flow. The trends 
of the terms in the shear-stress balance as listed above are similar to the trends of the 
corresponding terms in the energy balance. A strong wave of turbulent transport 
propagates outwards, helping to supply the increase of shear stress in the outer part 
of the boundarylayer in and downstream ofthe bend (as represented by the mean trans- 
port terms). The source of the turbulent transport is the large increase in generation 
in the region of the peak in vZwhich leads to a secondary peak in generation in the pro- 
files downstream of the bend. The pressure-strain term increases also but of course it is 
not possible to divide the increase between the two parts of the term mentioned above. 

5. Conclusions 
The contrast between the present results and those for the two-dimensional 20" 

concave bend in I is startling. The contrast seems to depend rather delicately on the 
way in which the destabilizing effect of extra strain rates varies after the near-impulsive 
strain imposed by the 20" bend. In the two-dimensional case the extra strain rate 
disappears at the end of the curved region, leaving a high level of shear stress which 
has already significantly reduced the mean velocity gradient aU/ay and continues to 
do so until shear-stress generation has fallen so much that the turbulence collapses. 
In the present case the sum of curvature and divergence effects increases through the 
bend and remains fairly high even after the curvature returns to zero (figure 2 6 ) .  The 
position of the peak in the shear-stress profile moves steadily outwards, instead of 
remaining at about the same y/6, as it does in the two-dimensional bend: as a result, 
typical values of aU/ay do not decrease as much as in the two-dimensional case, 
shear-stress generation remains high and is reinforced by the continuing extra-strain- 
rate effects, and the turbulence does not collapse. The extra-strain-rate effects in the 
downstream part of the present flow can be plausibly attributed to prolonged diver- 
gence alone. The results show that the empirical constant in the amplification factor 
for mixing length or similar properties is about 9, the same order as the value for 
prolonged curvature effects. 
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